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Abstract. The motion of a test particle falling in the spherically symmetric field of another 
heavy body has been studied in a few of the theories of gravitation proposed recently. I t  is 
shown that while the predicted behaviour of the test particle in the new theories of gravitation 
agrees with that of the general theory of relativity (GTR) for small velocities and weak fields, 
the new theories predict certain results which are qualitatively different from those of GTR 
when the fields are strong and the velocities are high. For example, the falling body is shown 
to encounter variable singular regions and repulsive fields in the new theories of gravitation 
whereas in GTR the field is attractive everywhere outside the Schwarzschild sphere, for arbi- 
trarily high velocities of the falling body. 

1. Introduction 

There have appeared in recent years, several theories of gravitation within the framework 
of flat space-time, These new theories of gravitation, more or less, are designed to meet 
the two requirements: (i) that they should reduce to the newtonian theory for weak 
fields and low velocities and (ii) ‘explain’ the three Einstein effects. Since, at least, a few 
of these theories, along with GTR, seem to explain the observed results of experimental 
gravitation fairly well, the need to find theoretical criteria to pick the ‘correct’ theory out 
of the mass of theories of gravitation has become very important. A fairly detailed 
analysis of the problem and the sorting of the theories is carried out by Will and Nordtvedt 
(1972a, b) using the PPN formalism. In this paper we compare a few of the new theories 
with GTR in the limit of strong fields and high velocities by studying the radial motion of a 
test particle in each of these theories. It is interesting that, although the orbital motion of 
a test particle in the centrally symmetric field of another heavy body has been studied in 
every theory of gravitation, the much simpler problem of the ‘approaching motion’ of 
the falling body does not appear to have received sufficient attention. It is the purpose 
of this paper to show tliat the falling body, which can probe any singularity in the 
neighbourhood of the attracting centre, can provide informatibn which may be of some 
use in evaluating the theory. 

As examples, we discuss the motion of the falling body according to the theories of 
Scott (1966), Rongved (1966) and Volkov (1971) and compare the results with those 
already obtained (Srinivasa Rao 1966, Zeldovich and Novikov 1971) according to GTR. 
Since all the theories reduce to the newtonian theory in the limit of low velocities and 
weak fields, they obviously yield the same motion for the test particle in this limit. 
However, when the velocity of the falling body is comparable with the velocity of light, 
the motion of the test particle is peculiar to each theory considered and the results are, in 
general, different. 
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2. Einstein's theory of gravitation 

The motion of the falling body in the Schwarzschild field has been discussed elsewhere 
(Srinivasa Rao 1966, Zeldovich and Novikov 1971) and we quote here only the results 
for the sake of comparison. The velocity U of the falling particle is given by 

( I - $ )  ( 1 - E )  = (1-$) (l-;) 

where S = 2GM/cZ is the Schwarzschild radius of the mass M ,  G is the universal constant 
of gravitation and U = U at r = r o .  Here U refers to the physical velocity of the particle 
and is defined (Landau and Lifshitz 1951) as (dlldt) where dl and dt refer to elements of 
distance and physical time as measured by an observer at rest at the field point in question. 
The coordinate differentials dr and dxo are related to dl and dt by 

dt2 = (I---) S (T) dxo . 
d12 = drz(  1 -!) - ; 

In the limit c -, 00, r -+ 1 and (2.1) reduces to the newtonian formula 

uZ = u z + 2 G M ( : - i ) ,  

where 

I = J r  ( 1 - !) - 1'2 dr. 

From (2.1), it follows that v increases monotonically from the initial value U to c as 
r -+ S .  Thus we have a gravitational field which is attractive everywhere outside the 
singular sphere r = S .  

3. The gravitokinetic field theory of Scott 

According to this theory (Scott 1966), the equation of motion of a test particle of rest mass 
mo in the centrally symmetric field of another body of rest mass M is given by 

d r 
F =  - (mv)  dt = - ( I - $ ) - '  GMm7, 

where U = (dr/dt) is the velocity of the particle and m = mo(l - u2/cz) -  l i Z  is its momenta1 
mass. For radial fall, U is antiparallel to r and (3.1) can be written as 

where U = [U(. [ntegrating (3.2) with the initial condition v = U at r = r o ,  we get 

From (3.3) we see that U touches c at r = R and becomes complex for r < R, where 

R = 2 S  [;; -+ ( 1-- : J 2 ] - l .  (3.4) 
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Thus, the region r < R is singular wherein the motion of the test particle is devoid of 
any meaning. However, the radius of this singular sphere is nor characteristic of the mass 
M like the Schwarzschild radius S = 2GM/c2,  as R is a function of U and ro and in fact 
for U - c, R - ro itself. 

4. RongW’s theory of gravitation 

In this theory (Rongved 1966), the velocity of the test particle moving in the radially 
symmetric field of another mass M is given by 

U’ = cZR(l -k2R”’), (4.1) 

where R = (1 -2S/r),  S = 2GM/c2 and k is a constant of integration to be fixed by 
initial conditions on U .  (The constant k used here is the reciprocal of the constant A 
used by Rongved.) For a particle falling along a radial line with U = U at r = r, ,  we get 

k 2 =  ( I-- R ,  

where R ,  = (1 -2S/r0).  We have obviously, 0 < R ,  < 1 for 2 s  < ro < CO and R ,  < 0 
for ro < 2 s .  Thus, outside the sphere r = 2S, k2 3 0 according as c2R,  2 U’, where, 
for finite r o ,  c2R,  < c2. Further, the mass m of the test particle given by (Rongved 1966) 

clearly shows that kZ < Ocorresponds to unphysical situations. We thus have the strange 
result that, for finite T,, , the range c2R,  < u2 < c2 is forbidden for U in contrast to GTR, 
where the only requirement on U is that U < c. 

From (4.1), we see that the velocity v has a maximum at r = r, ,  where 

18 
r ,  = ~ (9 - 4k-  ‘ )  s’ (4.3) 

with the maximum velocity given by 

Since v vanishes at r = 2 s  and has a maximum at r = r , ,  the field must be repulsive 
in 2 s  < r < I , ,  However, this repulsive region of the field is variable as r ,  depends on 
U and 1, .  If U and ro are so chosen to make k2 > f, then r ,  is positive and by making 
( k 2 - f )  sufficiently small, the size of this repulsive region can be made as large as we 
please. For k2 = f, r ,  is infinite and U ,  = J i c  which, obviously, is the largest of all U , .  

If k2 < f (or if the initial velocity exceeds J ic ) ,  then there is no velocity maximum as 
r ,  < 0 and the velocity of the particle continuously decreases from the initial velocity to 
zero as it approaches r = 2S, showing that the field, in this case, is everywhere repulsive. 

It is appropriate to point out here, that repulsive regions apparently follow from 
GTR too (McVittie 1956), but then only in terms of the coordinate velocity and these 
difficulties disappear (Srinivasa Rao 1966, Zeldovich and Novikov 1971), if one considers 
the physical velocity which is the only one having physical significance. 
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5. The action at a distance theory of Volkov 

The relevant equation in this theory (Volkov 1971) giving the velocity of a test particle 
of rest mass mo approaching another mass M at rest ( M  >> mo) is given by 

where $ = - /?GMm,/r, 4 = - rGMm,/r ,  c i  and ,8 are numbers subject to the constraint 
ct + f l  = 1 and E is the total energy of the system which is a constant. In the case f l  < 0, 
after the constant E has been determined by the condition v = U at r = r o ,  it follows from 
(5.1) that 

u , = c  1 - 7  , (5.2) i :r2 < v z  U as U ;  U , ;  

and obviously U,,, is real for p = (1 - S I )  < 0. The case p > 0 is of no interest as only a 
negative p ;  /? = -%yields a perihelic shift in the orbit of mercury (Volkov 1971) agreeing 
with the prediction of GTR. With this choice of /?, we get 
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